
Encodo Systems AG – Garnmarkt 1 – 8400 Winterthur
Telephone +41 52 511 80 80 – www.encodo.com

Encodo C# Handbook

Conventions, Style & Best Practices

Abstract

This document covers many aspects of programming with C#, from naming, structural and

formatting conventions to best practices for using existing and developing new code.

Authors

Marco von Ballmoos

Remo von Ballmoos

Marc Dürst

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 2 of 58

 Table of Contents

1 General ... 6
1.1 Goals ... 6
1.2 Scope ... 6
1.3 Fixing Problems in the Handbook ... 6
1.4 Fixing Problems in Code ... 6
1.5 Working with an IDE .. 7
2 Design Guide ... 8
2.1 Abstractions ... 8
2.2 Inheritance vs. Helpers ... 8
2.3 Interfaces vs. Abstract Classes .. 8
2.4 Modifying interfaces .. 8
2.5 Delegates vs. Interfaces .. 9
2.6 Methods vs. Properties ... 9
2.7 Virtual Methods ... 9
2.8 Choosing Types.. 9
2.9 Design-by-Contract .. 10
2.10 Controlling API Size.. 10
3 Structure .. 11
3.1 File Contents .. 11
3.2 Assemblies ... 12
3.3 Namespaces ... 12
3.3.1 Usage .. 12
3.3.2 Naming .. 12
3.3.3 Standard Prefixes ... 12
3.3.4 Standard Suffixes ... 13
3.3.5 Encodo Namespaces .. 13
3.3.6 Grouping and ordering .. 14
4 Formatting ... 15
4.1 Indenting and Spacing ... 15
4.1.1 Case Statements .. 15
4.2 Brackets (Braces) .. 15
4.2.1 Properties ... 15
4.2.2 Methods .. 16
4.2.3 Enumerations ... 16
4.2.4 Return Statements ... 16
4.3 Parentheses .. 16
4.4 Empty Lines .. 17
4.5 Line Breaking ... 17
4.5.1 Method Calls ... 18
4.5.2 Method Definitions .. 19
4.5.3 Multi-Line Text ... 20
4.5.4 Chained Method Calls ... 20
4.5.5 Anonymous Delegates ... 20
4.5.6 Lambda Expressions ... 21
4.5.7 Ternary and Coalescing Operators .. 22
5 Naming ... 23
5.1 Basic Composition.. 23
5.1.1 Valid Characters ... 23
5.1.2 General Rules ... 23
5.1.3 Collision and Matching .. 23
5.2 Capitalization ... 24
5.3 The Art of Choosing a Name .. 24
5.3.1 General .. 24

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 3 of 58

5.3.2 Namespaces ... 24
5.3.3 Interfaces ... 25
5.3.4 Classes ... 25
5.3.5 Properties ... 25
5.3.6 Methods .. 25
5.3.7 Parameters ... 26
5.3.8 Local Variables ... 26
5.3.9 Events .. 26
5.3.10 Enumerations ... 27
5.3.11 Generic Parameters .. 27
5.3.12 Lambda Expressions ... 27
5.4 Common Names .. 28
5.4.1 Local Variables and Parameters .. 28
5.4.2 User Interface Components .. 29
5.4.3 ASP Pages .. 29
6 Language Elements ... 30
6.1 Declaration Order... 30
6.2 Visibility ... 30
6.3 Constants .. 30
6.3.1 readonly vs. const .. 30
6.3.2 Strings and Resources .. 30
6.4 Properties ... 31
6.4.1 Indexers ... 31
6.5 Methods .. 32
6.5.1 Virtual .. 32
6.5.2 Overloads ... 32
6.5.3 Parameters ... 33
6.5.4 Constructors .. 33
6.6 Classes ... 36
6.6.1 Abstract Classes ... 36
6.6.2 Static Classes ... 36
6.6.3 Sealed Classes & Methods .. 36
6.7 Interfaces ... 37
6.8 Structs ... 37
6.9 Enumerations ... 38
6.9.1 Bit-sets ... 38
6.10 Nested Types .. 39
6.11 Local Variables ... 39
6.12 Event Handlers ... 39
6.13 Operators ... 39
6.14 Loops & Conditions .. 40
6.14.1 Loops ... 40
6.14.2 If Statements .. 40
6.14.3 Switch Statements ... 40
6.14.4 Ternary and Coalescing Operators .. 41
6.15 Comments ... 42
6.15.1 Formatting & Placement ... 42
6.15.2 Styles ... 42
6.15.3 Content ... 42
6.16 Grouping with #region Tags .. 43
6.17 Compiler Variables ... 43
6.17.1 The [Conditional] Attribute .. 43
6.17.2 #if/#else/#endif .. 43
7 Patterns & Best Practices .. 45
7.1 Safe Programming ... 45
7.2 Side Effects .. 45

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 4 of 58

7.3 Null Handling ... 46
7.4 Casting .. 46
7.5 Conversions ... 47
7.6 Object Lifetime ... 47
7.7 Using Dispose and Finalize ... 47
7.8 Using base and this .. 48
7.9 Using Value Types .. 48
7.10 Using Strings .. 48
7.11 Using Checked ... 48
7.12 Using Floating Point and Integral Types .. 48
7.13 Using Generics ... 49
7.14 Using Event Handlers ... 49
7.15 Using “var” .. 50
7.15.1 Examples .. 51
7.16 Using out and ref parameters ... 51
7.17 Error Handling .. 51
7.17.1 Strategies ... 51
7.17.2 Error Messages ... 52
7.17.3 The Try* Pattern ... 53
7.18 Exceptions .. 53
7.18.1 Defining Exceptions.. 53
7.18.2 Throwing Exceptions .. 54
7.18.3 Catching Exceptions ... 55
7.18.4 Wrapping Exceptions ... 55
7.18.5 Suppressing Exceptions .. 55
7.18.6 Specific Exception Types ... 56
7.19 Generated code ... 56
7.20 Setting Timeouts .. 56
7.21 Configuration & File System ... 56
7.22 Logging and Tracing .. 56
7.23 Performance .. 56
8 Processes .. 57
8.1 Documentation .. 57
8.1.1 Content ... 57
8.1.2 What to Document .. 58
8.2 Testing ... 58
8.3 Releases ... 58

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 5 of 58

 Version History

Version Datum Author Comments

0.1 03.12.2007 MvB Document Created

1.0 28.01.2008 MvB First Draft

1.1 06.02.2008 MvB Updated sections on error handling and naming

1.2 07.03.2008 MvB Change to empty methods; added conditional

compilation section; updated section on comments;

made some examples customer-neutral; fixed some

syntax-highlighting; reorganized language elements.

1.3 31.03.2008 MvB Added more tips for documentation; added white-

space rules for regions; expanded rules for line-

breaking; updated event naming section.

1.4 18.04.2008 MvB Updated formatting for code examples; added section

on using the var keyword; improved section on

choosing names; added naming conventions for

lambda expressions; added examples for formatting

methods; re-organized error handling/exceptions

section; updated formatting.

 Referenced Documents

Nr./Ref. Document Version Date

[1] Microsoft Design Guidelines for Developing Class Libraries 2.0

[2] Microsoft Internal Coding Guidelines 2.0

[3] IDesign C# Coding Standards 2.32

[4] Coding Standard: C# by Philips Medical Systems 1.3

[5] De gustibus non est disputandum. (blog post by Anthony

Steele)

 Open Issues

Nr./Ref. Document Version Date

Naming patterns for MVC

Formatting for lambda expressions

 Terms and Abbreviations

Term / Abbreviation Definition / Explanation

Encodo Style This document (Encodo Handbook for C#)

IDE Integrated Development Environment

VS Microsoft Visual Studio 2005/2008

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

DRY Don’t Repeat Yourself

http://msdn2.microsoft.com/en-us/library/ms229042(VS.80).aspx
http://blogs.msdn.com/brada/articles/361363.aspx
http://idesign.net/idesign/download/IDesign%20CSharp%20Coding%20Standard.zip
http://www.tiobe.com/standards/gemrcsharpcs.pdf
http://blogs.conchango.com/anthonysteele/archive/2007/10/12/IDesign-C_2300_-Coding-standards.aspx

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 6 of 58

1 General

1.1 Goals

The intent of this document is not to codify current practice at Encodo as it stands at the time of

writing. Instead, this handbook has the following aims:

 To maximize readability and maintainability by prescribing a unified style.

 To maximize efficiency with logical, easy-to-understand and justifiable rules that balance

code safety with ease-of-use.

 To maximize the usefulness of code-completion tools and accommodate IDE- or framework-

generated code.

 To prevent errors and bugs (especially hard-to-find ones) by minimizing complexity and

applying proven design principles.

 To improve performance and reliability with a list of best practices.

Wherever possible, however, the guidelines include a specific justification for each design choice.

Unjustified guidelines must be either justified or removed.

Whereas the Encodo Style draws mostly from in-house programming experience, it also includes

ideas from Microsoft’s C# coding style [1, 2], and benefits from both the IDesign [3] and Philips

[4] coding styles as corroborative sources.

1.2 Scope

This handbook mixes recommendations for programming with C#, .NET and the Encodo libraries.

It includes rules for document layout (like whitespace and element placement) as well as design

guidelines for elements and best practices for their use. It also assumes that you are using

Microsoft Visual Studio 2005 or newer.

This document is a work-in-progress and covers only those issues that Encodo has encountered

and codifies only that which Encodo has put into practice and with which Encodo has experience.

Therefore, some elements of style and design as well as some implicit best practices are probably

not yet documented. Speak up if you think there is something missing.

1.3 Fixing Problems in the Handbook

Unless otherwise noted, these guidelines are not optional, nor are they up to interpretation.

 If a guideline is not sufficiently clear, recommend a clearer formulation.

 If you don’t like a guideline, try to get it changed or removed, but don’t just ignore it. Your

code reviewer might not be aware that you are special and not subject to the rules.

1.4 Fixing Problems in Code

If code is non-conforming, it should be fixed at the earliest opportunity.

 If the error is small and localized, you should fix it with the next check-in (noting during the

code review that the change was purely stylistic and unrelated to other bug fixes).

 If the error is larger and/or involves renaming or moving files, you should check the change

in separately in order to avoid confusion.

 If the problem takes too long to repair quickly, you should create an issue in the bug-tracker

to address the problem at a later time.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 7 of 58

1.5 Working with an IDE

The coding conventions in this document are to be strictly followed for both manually-written

and code generated by Encodo tools. However, projects will contain code from other sources as

well.

Modern IDEs generate code; this is very helpful and saves a lot of work. In order to profit from

this, we will need to turn a blind eye to style infractions in generated code. Specific exceptions to

rules are mentioned with the rules themselves, but here are the general guidelines:

 Use preferences and options to enforce Encodo Style as much as possible.
1

 Names entered in visual designers must conform to the Encodo coding guidelines; auto-

generated control names are not acceptable if they are non-conforming.

 Any code generated by Encodo tools must conform to the Encodo coding guidelines

 Don’t bother enforcing Encodo guidelines for files that are generated by non-Encodo tools

(e.g. *.Designer files).

 In files containing hand-written code as well as auto-generated code, Encodo guidelines

should be enforced for member order, spacing and namespaces for all elements, but not

necessarily naming (e.g. event handlers generated by the environment may contain

underscores instead of being Pascal-case).

 “Format Document” is your friend and should be used to re-format auto-generated code to

the Encodo Style guidelines as much as possible.

 Use the highest warning level available (level 4 in Visual Studio) and make sure all warnings

are addressed (either by fixing the code or explicitly ignoring them) before checking in code.

 Release builds should treat warnings as errors to make sure that all warnings are removed

before release.

1
 The freeware product Code Style Enforcer is very helpful, as is the commercial product ReSharper.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 8 of 58

2 Design Guide

In general, design decisions that involve thinking about the following topics should not be made

alone. You should apply these principles to come up with a design, but should always seek the

advice and approval of at least one other team member before proceeding.

2.1 Abstractions

The first rule of design is “don’t overdesign”. Overdesign leads to a framework that offers unused

functionality and has interfaces that are difficult to understand and implement. Only create

abstractions where there will be more than one implementation or where there is a reasonable

need to provide for other implementations in the future.

This leads directly to the second rule of design: “don’t underdesign”. Understand your problem

domain well enough before starting to code so that you accommodate reasonably foreseeable

additional requirements. For example, whether or not there is a need for multiple

implementations (in which case you should define interfaces) or a need for code sharing (in which

case abstract interfaces are in order). You should create abstractions where they prevent repeated

code (applying the DRY principle) or where they provide decoupling.

If you do create an abstraction, make sure that there are tests which run against the abstraction

rather than a concrete implementation so that all future implementations can be tested. For

example, database access for a particular database should include an abstraction and tests for

that abstraction that can be used to verify all supported databases.

2.2 Inheritance vs. Helpers

The rule here is to only use inheritance where it makes semantic sense to do so. If two classes

could share code because they perform similar tasks, but aren’t really related, do not give them a

common ancestor just to avoid repeating yourself. Extract the shared code into a helper class and

use that class from both implementations. A helper class can be static, but may also be an

instance.

2.3 Interfaces vs. Abstract Classes

Whether or not to use interfaces is a hotly-debated topic. On the one hand, interfaces offer a

clean abstraction and “interface” to a library component and, on the other hand, they restrict

future upgrades by forcing new methods or properties on existing implementations. In a

framework or library, you can safely add members to classes that have descendents in application

code without forcing a change in that application code. However, abstract methods—which are

necessary for very low-level objects because the implementation can’t be known—run into the

same problems as new interface methods. Creating new, virtual methods with no implementation

to avoid this problem is also not recommended, as it fails to impart the intent of the method.

2.4 Modifying interfaces

 In general, be extremely careful of modifying interfaces that are used by code not under your

control (i.e. code that has shipped and been integrated into other codebases).

 If a change needs to be made, it must be very clearly documented in the release notes for

the code and must include tips for implementing/updating the implementation for the

interface.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 9 of 58

 Another solution is to develop a parallel path that consumes a new interface inherited from

the existing one.

2.5 Delegates vs. Interfaces

Both delegates and interfaces can be used to connect components in a loosely-coupled way. A

delegate is more loosely-coupled than an interface because it specifies the absolute minimum

amount of information needed in order to interoperate whereas an interface forces the

implementing component to satisfy a set of clearly-defined functionality.

If the bridge between two components is truly that of an event sink communicating with an

event listener, then you should use event handlers and delegates to communicate. However, if

you start to have multiple such delegate connections between two components, you’ll want to

improve clarity by defining an interface to more completely describe this relationship.

2.6 Methods vs. Properties

Use methods instead of properties in the following situations:

 For transformations or conversions, like ToXml() or ToSql().

 If the value of the property is not cached internally, but is expensive to calculate, indicate this

with a method call instead of a property (properties generally give the impression that they

reference information stored with the object).

 If the result is not idempotent (yields the same result no matter how often it is called), it

should be a method.

 If the property returns a copy of an internal state rather than a direct reference; this is

especially significant with array properties, where repeated access is very inefficient.

 When a getter is not desired, use a method instead of a write-only property.

For all other situations in which both a property and a method are appropriate, properties have

the following advantages over methods:

 Properties don’t require parentheses and result in cleaner code when called (especially when

many are chained together).

 It clearly indicates that the value is a logical property of the construct instead of an

operation.

2.7 Virtual Methods

 Choose carefully which methods are marked as virtual as they incur design, test and

maintenance costs not shared by non-virtual methods.

2.8 Choosing Types

 Use the least-derived possible type for local variables and method parameters; this makes the

expected API as explicit and open as possible.

 Use existing interfaces wherever possible—even when declaring local or member variables.

Interfaces should be useful in most instances; otherwise they’ve probably been designed

poorly.

IMessageStore messages = new MessageStore();
IExpressionContext context = new ExpressionContext(this);

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 10 of 58

 Use the actual instantiated class for the member type when you need to access members not

available in the interface. Do not modify the interface solely in order to keep using the

interface instead of the class.

2.9 Design-by-Contract

Use assertions at the beginning of a method to assert preconditions; assert post-conditions if

appropriate.

 Use Debug.Assert or throw standard system exceptions (see section 7.18.2 – Throwing

Exceptions) for pre- and post-conditions.

 You may throw the exception on the same line as the check, to mirror the formatting of the

assertion.

if (connection == null) { throw new ArgumentNullException("connection"); }

 If the assertion cannot be formulated in code, add a comment describing it instead.
1

 If class invariants are not supported, describe the restrictions in the class documentation or

note the invariant in commented form at the end of the class.

 All methods and properties used to test pre-conditions must have the same visibility as the

method being called.

2.10 Controlling API Size

 Be as stingy as possible when making methods public; smaller APIs are easier to understand.

 If another assembly needs a type to be public, consider whether that type could not remain

internalized if the API were higher-level. Use the Object Browser to examine the public API.

 To this end, frameworks that are logically split into multiple assemblies can use the

InternalsVisibleTo attributes to make “friend assemblies” and avoid making things

public. Given three assemblies, Quino, QuinoWinform and QuinoWeb (of which a standard

Windows application would include only the first two), the Quino assembly can make its

internals visible to QuinoWinform and QuinoWeb. This increases their interdependence, but

also makes the public API of Quino smaller.

1
 The spec# project at Microsoft Research provides an integration of Design-By-Contract mechanisms into the C#

language; at some point in the future, this may be worthwhile to include.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 11 of 58

3 Structure

3.1 File Contents

 Only one namespace per file is allowed.

 Multiple classes/interfaces in one file are allowed.

 The contents of a file should be obvious from the file name.

 If there are multiple classes in a file, then the file name should usually describe the subsystem

to which all these classes belong.

 If the file name does match a class in the file, the other types in that file should be

supporting types for that class and may include other classes, enums, or structs. The class

with the same name as the file must come first.

 If a file is intended to only ever have one element (class or interface), give it the same name

as the element. If a file is already named this way, do not add more classes or interfaces

(unless they are supporting types, as noted above); instead create a new file named after the

subsystem and move all types there.

 An enum should never go in its own file; instead, place it in the file with the other types that

use it.

 If a file has multiple classes and interfaces, the interfaces should go into their own file of the

same name as the original file, but prefixed with “I”. For example, the interfaces for

Encodo’s metadata framework are in IMetaCore.cs, whereas the classes are in

MetaCore.cs.

 If a file starts with “I”, it should contain only interfaces. The only exception to this rule is for

descendents of EventArgs used by events declared in the interfaces.

 Do not mix third-party or generated code and manually-written project or framework code

in the same file; instead consider using partial classes.

 Tests for a file go in <FileName>Tests.cs (if there are a lot of tests, they should be split

into several files, but always using the form <FileName><Extra>Tests.cs) where Extra

identifies the group of tests found in the file.

 Generated partial classes belong in a separate file, using the same root name as the user-

editable file, but extended by an identifier to indicate its purpose or origin (as in the example

below). This extra part must be Pascal-cased. For example:

Company.cs (user-modifiable file)

Company.Metadata.cs (properties generated from metadata)

 Files should not be too large; files of 1000 lines or more are noticeably slower in the Visual

Studio debugger. Separate logical groups of classes into multiple files using the rule above to

avoid this problem (even in generated code).

 Each file should include an Encodo header, whether auto-generated or not; template files

(like *.html or *.xml) should also include a header if this does not conflict with visual

editing or IDE-synchronization.

 The header should contain expandable tags for the check-in date, user and revision that can

be maintained by a source-control system.

 Namespace using statements should go at the very top of the file, just after the header and

just before the namespace declaration.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 12 of 58

3.2 Assemblies

 Assemblies should be named after their content using the following pattern:

Encodo.<Component>.Dll.

 Fill out company, copyright and version for all projects, both projects and libraries.

 Use a separate assembly for external code whenever possible; avoid mixing third-party code

into the same assembly as project or framework code.

 Only one Main() method per assembly is allowed; library assemblies should not have a

Main() method.

 Do not introduce cyclic dependencies.

 Application and web assemblies should have as little code as possible. Business logic should

go into a class library; view/controller logic should go in the application itself.

3.3 Namespaces

3.3.1 Usage

 Do not use the global namespace; the only exception is for ASP.NET pages that are

generated into the global namespace.

 Avoid fully-qualified type names; use the using statement instead.

 If the IDE inserts a fully-qualified type name in your code, you should fix it. If the unadorned

name conflicts with other already-included namespaces, make an alias for the class with a

using clause.

 Avoid putting a using statement inside a namespace (unless you must do so to resolve a

conflict).

 Avoid deep namespace-hierarchies (five or more levels) as that makes it difficult to browse

and understand.

3.3.2 Naming

 Avoid making too many namespaces; instead, use catch-all namespace suffixes, like

“Utilities”, “Core” or “General” until it is clearer whether a class or group of classes warrant

their own namespace. Refactoring is your friend here.

 Do not include the version number in a namespace name.

 Use long-lived identifiers in a namespace name.

 Namespaces should be plural, as they will contain multiple types (e.g. Encodo.Expressions

instead of Encodo.Expression).

 If your framework or application encompasses more than one tier, use the same namespace

identifiers for similar tasks. For example, common data-access code goes in Encodo.Data,

but metadata-based data-access code goes in Encodo.Quino.Data.

 Avoid using “reserved” namespace names like System because these will conflict with

standard .NET namespaces and require resolution using the global:: namespace prefix.

3.3.3 Standard Prefixes

 Namespaces at Encodo start with Encodo

 Namespaces for Encodo products start with Encodo.<ProductName>

 Namespaces for customer products start with Encodo.<CustomerName>.<ProductName>

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 13 of 58

3.3.4 Standard Suffixes

Namespace suffixes are to be added to the end of an existing namespace under the following

conditions:

Suffix When to Use

Designer Contains types that provide design-time functionality for a

base namespace

Generator Contains generated objects for a Quino model defined in a

base namespace

3.3.5 Encodo Namespaces

Listed below are the namespaces used by Encodo at the time of writing, with a description of

their contents.

Namespace Code Allowed

*.Properties Project-specific properties (e.g. properties for the Quino

project are in Encodo.Quino.Properties)

Encodo None; marker namespace only

Encodo.Data Helper code for working with the System.Data namespace

Encodo.Core Very generalized code, applicable to many problem

domains; not product or project-specific

Encodo.Expressions Basic expression tree builder and evaluator support (includes

parsers for string format and expressions as well as

operation evaluation for native operators)

Encodo.Messages Code for issuing, recording and storing messages (e.g.

errors, warnings, hints); not the same as Trace, which is

much lower-level

Encodo.Security Code describing general access control

Encodo.Testing All tests for code in child namespaces of Encodo.

Encodo.Utilities Code that is not product or project-specific, but addresses a

very specific problem (like XML, tracing, logging etc.)

Encodo.Quino None; marker namespace only; non-product-specific code

that uses Quino metadata should be in a sub-namespaces of

this one.

Encodo.Quino.Core All domain-independent metadata definitions and

implementations (e.g. IMetaClass is here, but

IViewClassAspect is defined in Encodo.Quino.View)

Encodo.Quino.Data Data access using Quino metadata

Encodo.Quino.Expressions Expressions containing metadata references

Encodo.Quino.Meta Contains definitions for core interfaces and classes in the

Quino metadata library.

Encodo.Quino.Models None; marker namespace only. Contains other namespaces

for models used by Quino testing or internals. Generated

objects should be in an Objects namespace (e.g. The

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 14 of 58

Namespace Code Allowed

Punchclock model resides in

Encodo.Quino.Models.Punchclock and its objects in

Encodo.Quino.Models.Punchclock.Objects)

Encodo.Quino.Objects Concrete instances of persistable objects (e.g.

GenericObject); expressly put into a separate namespace

so that code cannot just use GenericObject (you have to

add a namespace). This encourages developers to reference

interfaces rather than use GenericObject directly.

Encodo.Quino.Persistence Metadata-assisted storage and retrieval using the data layer.

Encodo.Quino.Properties Properties for the Quino project only; do not place code

here.

Encodo.Quino.Schema Code related to database schema import and export.

Encodo.Quino.Testing All tests for code in child namespaces of Encodo.Quino.

Encodo.Quino.View Platform-independent visualization code.

Encodo.Quino.Winform Winform-dependent code based on standard .NET controls.

Encodo.Quino.Winform.DX DevExpress-dependent code

Encodo.Quino.Web ASP.NET-dependent code

3.3.6 Grouping and ordering

The namespaces at the top of the file should be in the following order:
1

System.* .NET framework libraries

Third party Non-Encodo third-party libraries

Encodo.* Organize in order of dependency

Encodo.Quino.* Organize in order of dependency

1
 Visual Studio 2008 and ReSharper offer tools for automatically sorting the using statements in a file.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 15 of 58

4 Formatting

The formatting rules were designed for use with C#. Where possible, they should be applied to

other languages (CSS, JavaScript, etc.) as well.

4.1 Indenting and Spacing

 An indent is two spaces
1
; it is never a tab.

 Use a single space after a comma (e.g. between function arguments).

 There is no space after the leading parenthesis/bracket or before the closing

parenthesis/bracket.

 There is no space between a method name and the leading parenthesis, but there is a space

before the leading parenthesis of a flow control statement.

 Use a single space to surround all
2
 infix operators; there is no space between a prefix

operator (e.g. “-” or “!”) and its argument.

 Do not use spacing to align type members on the same column (e.g. as with the members of

an enumerated type).

4.1.1 Case Statements

 Contents under case statements should be indented; if there are brackets, they are not

indented.

switch (flavor)
{
 case Flavor.Up:
 case Flavor.Down:
 {
 int quarkIndex = 0; // valid within scope of case statement
 break;
 }
 case Flavor.Charm:
 case Flavor.Strange:
 int isTopOrBottom = false; // valid within scope of switch statement
 break;
 default:
 break;
}

4.2 Brackets (Braces)

 Curly brackets should—with a few exceptions outlined below—go on their own line.

 A line with only a closing bracket should never be followed by an empty line.

 A line with only an opening bracket should never be followed by an empty line.

4.2.1 Properties

 Simple getters and setters should go on the same line as all brackets.

 Abstract properties should have get, set and all braces on the same line

 Complex getters and setters should have each bracket on its own line.

1
 The official C# standard, however, is four spaces. We use two; deal with it.

2
 This includes the => lambda expression operator.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 16 of 58

This section applies to .NET 3.5 only.

 Prefer automatic properties as it saves a lot of typing and vastly improves readability.

4.2.2 Methods

 Completely empty functions, like constructors, should have a space between brackets placed

on the same line:

SomeClass(string name)
 : base(name)
{ }

4.2.3 Enumerations

 Use the trailing comma for the last member of an enumeration; this makes it easier to move

them around, if needed.

4.2.4 Return Statements

 Use single-line, bracketed syntax for one-line returns with simple conditions:

if (Count != other.Count) { return false; }

 If a return statement is not the only statement in a method, it should be separated from

other code by a single newline.

if (a == 1) { return true; }

return false;

 Multiple return statements should be clear and only used from relatively short methods (up

to ten lines or so). In all other cases, you should use a local variable named “result” and

return it from the end of the method.

 Do not use else with return statements (use the style shown above instead):

if (a == 1)
{
 return true;
}
else // Not necessary and not allowed
{
 return false;
}

Note: the code above is not allowed.

4.3 Parentheses

 C# has a different operator precedence than Pascal or C, so you can write context !=

null && context.Count > 0 without confusing the compiler. However, you should use

the form (context != null) && (context.Count > 0) for legibility’s sake.

 Do not use parentheses around the parameter(s) in a lambda expression.

 To make it more readable, use parentheses around the condition of a ternary expression if it

uses an infix operator.

return (_value != null) ? Value.ToString() : "NULL";

 Prefix operators (e.g. “!”) and simple function calls do not need parentheses.

return !HasValue ? Value.ToString() : "EMPTY";

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 17 of 58

4.4 Empty Lines

In the following list, the phrase “surrounding code” refers to a line consisting of more than just

an opening or closing brace. That is, no new line is required when an element is at the beginning

or end of a methods or other block-level element.

Always place an empty line in the following places:

 Between the file header and the namespace declaration or the first using statement.

 Between the last using statement and the namespace declaration.

 Between types (classes, structs, interfaces, delegates or enums).

 Between public, protected and internal members.

 Between preconditions and ensuing code.

 Between post-conditions and preceding code.

 Between a call to a base method and ensuing code.

 Between return statements and surrounding code (this does not apply to return statements

at the beginning or end of methods).

 Between block constructs (e.g. while loops or switch statements) and surrounding code.

 Between documented enum values; undocumented may be grouped together.

 Between logical groups of code in a method; this notion is subjective and more a matter of

style. You should use empty lines to improve readability, but should not overuse them.

 Between the last line of code in a block and a comment for the next block of code.

 Between statements that are broken up into multiple lines.

 Between a #region tag and the first line of code in that region.

 Between the last line of code in a region and the #endregion tag.

Do not place an empty line in the following places:

 After another empty line; the Encodo style uses only single empty lines.

 Between retrieval code and handling for that code. Instead, they should be formatted

together.

IMetaReadableObject obj = context.Find<IMetaReadableObject>();
if (obj == null)
{
 context.Recorder.Log(Level.Fatal, String.Format("Error!”));
 return null;
}

 Between any line and a line that has only an opening or closing brace on it (i.e. there should

be no leading or trailing newlines in a block).

 Between undocumented fields (usually private); if there are many such fields, you may use

empty lines to group them by purpose.

4.5 Line Breaking

 No line should exceed 100 characters; use the line-breaking rules listed below to break up a

line.

 Use line-breaking only when necessary; do not adopt it as standard practice.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 18 of 58

 Break up long lines by formatting elements (like parameters in method calls or definitions) on

separate lines. For example:

people.DataSource = CurrentCompany.Employees.GetList(
 connection,
 metaClass,
 GetFilter(),
 null
);

 Each logical level should be indented. If, in the example above, the method call was also

placed on its own line (if it was quite long, perhaps), then it would be formatted as follows:

people.DataSource =
 CurrentCompany.Employees.GetList(
 connection,
 metaClass,
 GetFilter(),
 null
);

 Either all elements are formatted on one line or all elements are formatted on separate lines,

unless there is a semantic reason for using a different pattern (see below).

 If the semantics demand it, use a fixed pattern to determine how many elements format on

the same line.

builder.AddOneToManyPath(
 "ToDo_User",
 user, "Id",
 toDo, "UserId",
);

In the example above, the parameters user and “Id” and todo and “UserId” belong

together semantically, so they are formatted on the same line.

 Put the comma on the same line after the element because the IDE is much more helpful

when formatting that way.

4.5.1 Method Calls

 The closing parenthesis of a method call goes on its own line to “close” the block (see

example below).

result.Messages.Log(
 Level.Error,
 String.Format(
 "Class [{0}] has the same metaid as class [{1}].",
 dbCls.Identifier,
 classMap[cls.MetaId]
)
);

 If the result of calling a method is assigned to a variable, the call may be on the same line as

the assignment if it fits.

people.DataSource = CurrentCompany.Employees.GetList(
 connection,
 ViewAspectTools.GetViewableWrapper(cls),
 GetFilter().Where(String.Format(“PersonId = {0}”, personId)),
 null
);

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 19 of 58

 If the call does not fit easily—or if the function call is “too far away” from the ensuing

parameters, you should move the call to its own line and indent it:

WindowTools.GetActiveWindow().GetActivePanel().GetActiveList().DataSource =
 CurrentCompany.Organization.MainOffice.Employees.GetList(
 connection,
 ViewAspectTools.GetViewableWrapper(cls),
 GetFilter().Where(String.Format(“PersonId = {0}”, personId)),
 null
);

4.5.2 Method Definitions

 Stay consistent with line-breaking in related methods within a class; if one is broken up onto

multiple lines, then all related methods should be broken up onto multiple lines.

 The closing brace of a method definition goes on the same line as the last parameter (unlike

method calls). This avoids having a line with a solitary closing parenthesis followed by a line

with a solitary opening brace.

public static void SetupLookupDefinition(
 RepositoryItemLookUpEdit lookupOptions,
 IMetaClass metaClass)
{

 // Implementation...

}

 Generic method constraints should be specified on their own line, with a single indent.

string GetNames<T>(IMetaCollection<T> elements, string separator, NameOption options)
 where T : IMetaBase;

 The generic method constraint should line up with the parameters, if they are specified on

their own lines.

public static void SetupLookupFromData<T>(
 RepositoryItemLookUpEdit lookupOptions,
 IDataList<T> dataList)
 where T : IMetaReadable
{
 SetupLookupFromData<T>(lookupOptions, dataList, dataList.MetaClass);
}

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 20 of 58

4.5.3 Multi-Line Text

 Longer string-formatting statements with newlines should be formatted using the @-

operator and should avoid using concatenation:

result.SqlText = String.Format(
 @"FROM person
 LEFT JOIN
 employee
 ON person.employeeid = employee.id
 LEFT JOIN
 company
 ON person.companyid = company.id
 LEFT JOIN
 program
 ON company.programid = program.id
 LEFT JOIN
 settings
 ON settings.programid = program.id
 WHERE
 program.id = {0} AND person.hiredate <= '{2}';
 ",
 settings.ProgramId,
 state,
 offset.ToString("yyyy-MM-dd")
);

 If the indenting in the string argument above is important, you may break indenting rules

and place the text all the way to the left of the source in order to avoid picking up extra,

unwanted spaces. However, you should consider externalizing such text to resources or text

files.

 The trailing double-quote in the example above is not required, but is permitted; in this case,

the code needs to include a newline at the end of the SQL statement.

4.5.4 Chained Method Calls

 Chained method calls can be formatted onto multiple lines; if one chained function call is

formatted onto its own line, then they should all be.

string contents = header.
 Replace("{Year}", DateTime.Now.Year.ToString()).
 Replace("{User}", "ENCODO").
 Replace("{DateTime}", DateTime.Now.ToString());

 If a line of a chained method call opens a new logical context, then ensuing lines should be

indented to indicate this. For example, the following example joins tables together, with the

last three statements applied to the last joined table. The indenting helps make this clear.

query.
 Join(Settings.Relations.Company).
 Join(Company.Relations.Office).
 Join(Office.Relations.Employees).
 WhereEquals(Employee.Fields.Id, employee.Id)
 OrderBy(Employee.Fields.LastName, SortDirection.Ascending)
 OrderBy(Employee.Fields.FirstName, SortDirection.Ascending);

4.5.5 Anonymous Delegates

 All rules for standard method calls also apply to method calls with delegates.

 Anonymous delegates are always written on multiple lines for clarity.

 Do not use parentheses for anonymous delegates if there are no parameters.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 21 of 58

 Anonymous delegates should be written with an indent, as follows:

IMetaCollection<IMetaProperty> persistentProps =
 model.ReferencedProperties.FindAll(
 delegate(IMetaProperty prop)
 {
 return prop.Persistent;
 }
);

 Even very short delegates benefit from writing in this fashion (the alternative is much messier

and not so obviously a delegate when browsing through the code):

public string[] Keys
{
 get
 {
 return ToStrings(
 delegate(T item)
 {
 return item.Identifier;
 }
);
 }
}

 This notation is also useful for long function calls with many or long parameters. If, for

example, a delegate is one of the parameters, then you should make a block out of the

whole function call, like this:

_context = new DataContext(
 Settings.Default.ConfigFileName,
 DatabaseType.PostgreSql,
 delegate ()
 {
 return ModelGenerator.CreateModel();
 }
);

In the example above each parameter is on its own line, as required.

 Here’s a fancy one, with a delegate in a constructor base; note that the closing parenthesis is

on the same line as the closing brace of the delegate definition.

public Application()
 : base(
 DatabaseType.PostgreSql,
 delegate()
 {
 return ModelGenerator.CreateModel();
 })
 { }

4.5.6 Lambda Expressions

This section applies to .NET 3.5 only.

 All rules for standard method calls also apply to method calls with lambda expressions.

 Very short lambda expressions may be written as a simple parameter on the same line as the

method call:

ReportError(msg => MessageBox.Show(msg));

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 22 of 58

 Longer lambda expressions should go on their own line, with the closing parenthesis of the

method call closing the block on another line. Any calls attached to the result—like

ToList() or Count()—should go on the same line as the closing parenthesis.

people.DataSource = CurrentCompany.Employees.Where(
 item => item.LessonTimeId == null
).ToList();

 Longer lambda expressions should not be both wrapped and used in a foreach-statement;

instead, use two statements as shown below.

var appointmentsForDates = data.Appointments.FindAll(
 appt => (appt.StartTime >= startDate) && (appt.EndTime <= endDate)
);

foreach (var appt in appointmentsForDates)
{

 // Do something with each appointment

}

4.5.7 Ternary and Coalescing Operators

 Do not use line-breaking to format statements containing ternary and coalescing operators;

instead, convert to an if/else statement.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 23 of 58

5 Naming

The naming rules were designed for use with C#. Where possible, they should be applied to

elements of other languages (CSS, JavaScript, etc.) as well.

5.1 Basic Composition

5.1.1 Valid Characters

 Identifiers should contain only alphabetic characters.

 The underscore is allowed only as a leading character for fields (or when included in a

member generated by the IDE).

 Numbers are allowed only for local variables and method parameters and may then only

appear as a suffix. Avoid using numbers wherever possible. (A valid use of a number in an

identifier is in a sorting routine that accepts two elements; in that case, “value1” and

“value2” are appropriate.)

5.1.2 General Rules

 Names are in US-English (e.g. use “color” instead of “colour”).

 Names conform to English grammatical conventions (e.g. use ImportableDatabase

instead of DatabaseImportable).

 Names should be as short as possible without losing meaning.

 Prefer whole words or stick to predefined short forms or abbreviations of words (as seen in

section 5.4.1 – Local Variables and Parameters).

 Make sure to capitalize compound words correctly; if the word is not hyphenated, then it

does not need a capital letter in the camel- or Pascal-cased form. For example, “metadata” is

written as Metadata in Pascal-case, not MetaData.

 Acronyms should be Pascal-case as well (e.g. “Xml” or “Sql”) unless they are only two letters

long. Acronyms at the beginning of a camel-case identifier are always all lowercase.

 Identifiers differing only by case may be defined within the same scope only if they identify

different language elements (e.g. a local variable and a property).

public void UpdateLength(int newLength, bool refreshViews)
{
 int length = Length;
 // ...
}

 You may not use identifiers that are keywords in C#; neither may you use the @-symbol to

turn a keyword into a valid identifier.

5.1.3 Collision and Matching

 Do not name an element with the same identifier as its containing element (e.g. don’t create

a static class named Expressions within a namespace called Expressions).

 Since C# allows it, you should use the same identifier for a property as its type if that is the

most appropriate name in that context (this is often the case with enum properties).

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 24 of 58

5.2 Capitalization

The following table lists the capitalization and naming rules for different language elements.

Pascal-case capitalizes every individual word within an identifier, including the first one. Camel-

case capitalizes all but the first word in an identifier.

Language Element Case

Class Pascal

Interface Pascal w/leading “I”

Struct Pascal

Enumerated type Pascal

Enumerated element Pascal

Properties Pascal

Generic parameters Pascal

Public or protected readonly or const

field

Pascal

Private field Camel with leading underscore
1

Method argument Camel

Local variable Camel

Attributes Pascal with “Attribute” suffix

Exceptions Pascal with “Exception” suffix

Event handlers Pascal with “EventHandler” suffix

5.3 The Art of Choosing a Name

5.3.1 General

 Readability is paramount, so while short names are desirable, make sure the identifier is clear

and reads well (e.g. the property bool UpdatesAutomatically is better than bool

AutoUpdate).

 Do not use a prefix for members in order to “group” them; this applies to enumerated type

members as well.

 Do not use a generalized prefixing notation (e.g. Hungarian).

 Use the plural form to indicate lists instead of a suffix like “List” (e.g. use appointments

instead of appointmentList).

5.3.2 Namespaces

 Do not use a “library” prefix for types (e.g. instead of QnoDatabase, use a more descriptive

name, like MetaDatabase or RelationalDatabase).

 Avoid very generic type names (e.g. Element, Node, Message or Log), which collide with

types from the framework or other commonly-used libraries. Use a more specific name, if at

all possible.
 2

1
 This is not CLS-compliant because protected variables in Visual Basic always start with an underscore, so the code could

not be re-generated in that language. We’ve chosen not to care.
2
 Name collisions can be resolved using aliases or simply by using global:: namespace resolution, but this makes working

with and reading the code both more difficult. For example, suppose we have made an interface for metadata

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 25 of 58

 If there are multiple types encapsulating similar concepts (but with different

implementations, for example), you should use a common suffix to group them. For

example, all the expression node types in the Encodo expressions library end in the word

Expression.

5.3.3 Interfaces

 Prefix interfaces with the letter “I”.

5.3.4 Classes

 If a class implements a single interface, it should reflect this by incorporating the interface

name into its own (e.g. MetaList implements IList).

 Static classes used as toolkits of static functions should use the suffix “Tools” and should go

in a file ending in “Tools.cs”.

5.3.5 Properties

 Properties should be nouns or adjectives.

 Avoid using “Is” as the prefix for Boolean properties unless it really adds value.

 A property’s backing field (if present) must be an underscore followed by the name of the

property in camel case.

 Use common names, like Item or Value, for accessing the central property of a type.

 Do not include type information in property names. For example, for a property of type

IMetaRelation, use the name Relation instead of the name MetaRelation.

 Make the identifier as short as possible without losing information. For example, if a class

named IViewContext has a property of type IViewContextHandler, that property should

be called Handler.

 If there are two properties that could be shortened in this way, then neither of them should

be. If the class in the example above has another property of type IEventListHandler,

then the properties should be named something like ViewContextHandler and

EventListhandler, respectively.

 Avoid repeating information in a class member that is already in the class name. Suppose,

there is an interface named IMessages; instances of this interface are typically named

messages. That interface should not have a property named Messages because that would

result in calls to messages.Messages.Count, which is redundant and not very readable.

Instead, name the property something more semantically relevant, like All, so the call would

read messages.All.Count.

5.3.6 Methods

 Methods names should include a verb.

 Method names should not repeat information from the enclosing type. For example, an

interface named IMessages should not have a method named LogMessage; instead name

the method Log.

properties in the Encodo.Quino.Meta namespace. The natural name for the interface is IProperty, but that’s too
common a name, so we should use something like IMetaProperty instead. Other metadata interfaces would share this
prefix, like IMetaClass, IMetaRelation and so on.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 26 of 58

 State what a method does; do not describe the parameters (let code-completion and the

signature do that for you).

 Methods that return values should indicate this in their name, like GetList(), GetItem()

or CreateDefaultDatabase(). Though there is garbage collection in C#, you should still

use Get to indicate retrieval of a local value and Create to indicate a factory method, which

always creates a new reference. For example, instead of writing:

public IDataList<GenericObject> GetList(IMetaClass cls)
{
 return ViewApplication.Application.CreateContext<GenericObject>(cls);
}

You should write:

public IDataList<GenericObject> CreateList(IMetaClass cls)
{
 return ViewApplication.Application.CreateContext<GenericObject>(cls);
}

 Avoid defining everything as a noun or a manager. Prefer names that are logically relevant,

like Missile.Launch() rather than MissileLauncher.Execute(missile).

 Methods that set a single property value should begin with the verb Set.

5.3.7 Parameters

 Prefer whole words instead of abbreviations (use index instead of idx).

 Parameter names should be based on their intended use or purpose rather than their type

(unless the type indicates the purpose adequately).

 Do not simply repeat the type for the parameter name; use a name that is as short as

possible, but doesn’t lose meaning. (E.g. a parameter of type IDataContext should be

called context instead of dataContext.

 However, if the method also, at some point, makes use of an IViewContext, you should

make the parameter name more specific, using dataContext instead.

5.3.8 Local Variables

Since local variables are limited to a much smaller scope and are not documented, the rules for

name-selection are somewhat more relaxed.

 Try to use a name from section 5.4.1 – Local Variables and Parameters, if possible.

 Avoid using temp or i or idx for loop indexes. Use the suffix Index together with a

descriptive prefix, as in colIndex or itemIndex or memberIndex.

 Names need only be as specific as the scope requires.

 The more limited the scope, the more abbreviated the variable may be.

5.3.9 Events

 Single events should be named with a noun followed by a descriptive verb in the past tense.

event EventHandler MessageDispatched;

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 27 of 58

 For paired events—one raised before executing some code and one raised after—use the

gerund form (i.e. ending in “ing”) for the first event and the past tense (i.e. ending in “ed”)

for the second event.

event EventHandler MessageDispatching;
event EventHandler MessageDispatched;

 Event receivers are like any other methods and should be named according to their task, not

the event to which they are attached. The following method updates the user interface; it

does this regardless of whether it is attached as an event receiver for the

MessageDispatched event.
1

void UpdateUserInterface(object sender, EventArgs args)
{
 // Implementation
}

 Never start an event receiver method with “On” because Microsoft uses that convention for

raising events.

 To trigger an event, use Raise[EventName]; this method must be protected and virtual

to allow descendents to perform work before and after calling the base method.

 If you are raising events for changes made to properties, use the pattern

“Raise[Property]Changed”.

5.3.10 Enumerations

 Simple enumerations have singular names, whereas bit-sets
2
 have plural names.

5.3.11 Generic Parameters

 If there is only one generic parameter, use the letter T. If there are two generic parameters

and they correspond to a key and a value, then use K and V. If there are multiple parameters,

but no pattern, name the “contained” element T (if there is one) and the other parameters

something specific starting with the letter T.

5.3.12 Lambda Expressions

 Do not use the highly non-expressive x as a parameter name
3
.

 Parameters in a lambda expression should follow the same conventions as for parameters in

standard methods.

 Do not make overly-complex lambda expressions; instead, define a method or use a

delegate.

1
 This applies only to event handlers written by hand; those generated by the IDE should be left untouched and will, in

general, start with the name of the control, followed by an underscore, followed by the name of the event. Therefore,
the click event for the control _okButton will be _okButton_Click. These may be left as generated.

2
 Enumerations marked with the [flags] attribute (discussed below).

3
 This is the default variable name taken from other functional languages, but it’s completely non-descriptive and thus

doesn’t conform to conventions.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 28 of 58

5.4 Common Names

5.4.1 Local Variables and Parameters

The following table presents the method parameter or local variable name you should use for

common types in the .NET and Encodo libraries. For other types, try to follow the spirit of the

naming convention by choosing complete words or known abbreviations.

Type Parameter & Variables Variables only

IMessageStore messages msgs

Exception exception

IMetaBase metadata

IMetaModel model

IMetaClass cls

IMetaProperty prop

IMetaRelation relation

IMessageRecorder recorder

IMetaEndpoint source, target

IMetaBase, IMetaElement elt, element

IDbCommand cmd, command

IDbConnection conn, connection

I*Database db, database

IQuery query

I*Context context1

I*Handler handler

IMessage msg, message

IOperator op, operation

IExpression expr, expression

*Item item

String name, message, msg,

text (not n, txt)

*Session session

*Application application, app

*EventArgs args2

*List list

*Collection collection, coll

*Type Type

*Column column, col

CultureInfo Culture

Encoding Encoding

*Bookmark Bookmark

Appointment Appointment appt

1
 Though ctx or ctxt for context are common enough, they are not recommended.

2
 This differs explicitly from the Microsoft recommendation, which advocates using e.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 29 of 58

5.4.2 User Interface Components

UI Elements should not include a suffix that indicates their control type unless there is another

member that already uses that name or there are two controls that would use that name.
1
 If a

suffix must be used, use one from the table below that best matches the control’s type.

UI Element Suffix Example

Menu or toolstrip item Item _saveItem

Menu (context or main) Menu _logMenu

Listview, listbox, etc. List _fileList

Trees Tree _folderTree

Columns Column _lastNameColumn

Grids Grid _programsGrid

Data Sources Data _programsData

Text boxes Text _lastNameText

Labels Label _lastNameLabel

Check boxes Checkbox _isEmployeeCheckbox

Page Control Tabs Tab _optionsTab

Radio Buttons RadioButton _salariedRadioButton

Page Controls Pages _preferencesPages

Dialogs Dialog _saveModelDialog

Image lists Images _smallMenuImages

Generic controls Control _someControl

5.4.3 ASP Pages

 Do not add a suffix to the names of ASP pages since that name is used in the URL (at least in

classic ASP.NET; naming patterns for MVC will come later).

 Do not add a prefix or suffix to pages used as AJAX-dialogs; instead, collect these pages into

a sub-folder named “Dialogs”.

1
 For example, this conflict can arise when you have a list control with a popup menu attached to it.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 30 of 58

6 Language Elements

6.1 Declaration Order

 constructors

 public constants

 properties

 public methods

 protected methods

 private methods

 protected fields

 private fields

6.2 Visibility

 The visibility modifier is required for all types, methods and fields; this makes the intention

explicit and consistent.

 The visibility keyword is always the first modifier.

 The const or readonly keyword, if present, comes immediately after the visibility modifier.

 The static keyword, if present, comes after the visibility modifier and readonly modifier.

private readonly static string DefaultDatabaseName = "admin";

6.3 Constants

 Declare all constants other than 0, 1, true, false and null.

 Use true and false only for assignment, never for comparison.

 Avoid passing true or false for parameters; use an enum or constants to impart meaning

instead.

 If there is a logical connection between two constants, indicate this by making the

initialization of one dependent on the other.

public const int DefaultCacheSize = 25;
public const int DefaultGranularity = DefaultCacheSize / 5;

6.3.1 readonly vs. const

The difference between const and readonly is that const is compiled and readonly is

initialized at runtime.

 Use const only when the value really is constant (e.g. NumberDaysInWeek); otherwise, use

readonly.

 Though readonly for references only prevents writing of the reference, not the attached

value, it is still a helpful hint for both the compiler and the reader.

6.3.2 Strings and Resources

 Do not hardcode strings that will be presented to the user; use resources instead. For

products in development, this text extraction can be performed after the code has

crystallized somewhat.

 Resource identifiers should be alphanumeric, but may also include a dot (“.”) to logically

nest resources.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 31 of 58

 Do not use constants for strings; use resource tables instead (this aids translation, if

necessary).

 Configuration data should be moved into application settings as soon as possible.

6.4 Properties

 In the event that setting a property caused an exception , then the existing value should be

restored.

 Use read-only properties if there is no logical reason for calling code to be able to change

the value.

 Properties should be commutative; that is, it should not matter in which order you set them.

Avoid enforcing an ordering by using a method to execute code that you would want to

execute from the property setter. The following example is incorrect because setting the

password before setting the name causes a login failure.

class SecuritySystem
{
 private string _userName;

 public string UserName
 {
 get { return _userName; }
 set { _userName = value; }
 }

 private int _password;

 public int Password
 {
 get { return _password; }
 set
 {
 _password = value;
 LogIn();
 }
 }

 protected void LogIn()
 {
 IPrincipal principal = Authenticate(UserName, Password);
 }

 private IPrincipal Authenticate(string UserName, int Password)
 {
 // Authenticate the user
 }
}

Instead, you should take the call LogIn() out of the setter for Password and make the

method public, so the class can be used like this instead:

SecuritySystem system = new SecuritySystem();
system.Password = "knockknock";
system.UserName = "Encodo";
system.LogIn();

In this case, Password can be set before the UserName without causing any problems.

6.4.1 Indexers

 Provide an indexed property only if it really makes sense in the context of the class.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 32 of 58

 Indexes should be 0-based.

6.5 Methods

 Methods should not have more than 200 lines of code

 Avoid returning null for methods that return collections or strings. Instead, return an empty

collection (declare a static empty list) or an empty string (String.Empty).

 Default implementations of empty methods should have both brackets on the same line:

protected virtual void DoInitialize(IMessageRecorder recorder) { }

 Overrides of abstract methods or implementations of interface methods that are explicitly

left empty should be marked with NOP:

protected override void DoBeforeSave()
{
 // NOP
}

 Consider using partial methods to reduce the number of explicitly declared virtual methods if

you are using C# 3.0.

6.5.1 Virtual

 Prefer making virtual methods protected instead of public, but do not create an extra

layer of method calls just to do so. If a method has logical pre-conditions or post-conditions

(i.e. the pre-condition checks for more than just whether a parameter is null), consider

making the method protected and wrapping it in a public method with the contracts in it (as

below):

public void Update(IQuery query)
{
 Debug.Assert(query != null);
 Debug.Assert(query.Valid);
 Debug.Assert(Updatable);

 DoUpdate(query);

 Debug.Assert(UpToDate);
}

public virtual void DoUpdate(IQuery query)
{
 // Perform update
}

Always use “Do” as a prefix for such protected, helper methods.

 If a protected method is not virtual, make it private unless it will be used from a

descendent.

6.5.2 Overloads

 Overloads are encouraged for methods that are in the same family and either serve the same

purpose or have similar behavior. Do not use the types of parameters to distinguish these

functions from one another. For example, the following is incorrect

void Update();
void UpdateUsingQuery(IQuery query);
void UpdateUsingSql(string sql);

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 33 of 58

Instead, use an overload, letting the method signature describe the different functions. This

reduces the perceived size of the API and makes it easier to understand.

void Update();
void Update(IQuery query);
void Update(string sql);

 If an overloaded method must be marked virtual, make only one version virtual and define all

of the others in terms of that one. Using the example above, this would yield:

public void Update()
{
 Update(QueryTools.NullQuery); // Accesses a static global “null” query
}

public virtual void Update(IQuery query)
{
 // Perform update
}

public void UpdateUsingSql(string sql)
{
 Update(new Query(sql));
}

 If two or more overloads share a parameter, that parameter name should be the same in all

overloads.

 Similarly, standardize parameter positions as much as possible between overloads and even

just similar methods.

6.5.3 Parameters

 Methods should not have more than 5 parameters (consider using a struct instead).

 Methods should not have more than 2 out or ref parameters (consider using a struct

instead).

 ref, then out parameters should come last in the list of parameters.

 The implementation of an interface method should use the same parameter name as that

given in the interface method declaration.

 Do not declare reserved parameters (use overloads in future library versions instead).

 If a method follows the Try* pattern—which returns a bool indicating success, and accepts

a single out parameter—the parameter should be named “result”. The method should be

prefixed with “Try”.

 Do not assign new values to parameters; use a local variable instead. Assignments to

parameters are easy-to-miss in larger methods. If you use a local variable instead, a reader

knows right away to look for initializations of that variable rather than to look for changes to

the parameter value.

6.5.4 Constructors

 Base constructors should be on a separate line, indented one level.

 Consider including the default base() call in constructors to make it clear which constructor

is called (and to provide a way of quickly jumping to the implementation in the IDE).

 A constructor is considered to be valid if it doesn’t crash and the object can be used without

crashing or causing unwarranted exceptions (null reference, etc.). Any properties required by

the constructor to make it valid should be passed in as parameters.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 34 of 58

 All constructors should satisfy all class invariants; that is, you cannot require a user to set

properties on an object in order to make it valid. A class may, however, require that some

properties should be set before being able to use certain functions of a class. The example

below shows such a class, which has an empty constructor and requires that certain

properties are set before calling Connect() or LogIn().

internal abstract class BackEnd
{
 void BackEnd()
 { }

 internal abstract string ServerName { get; set; }

 internal abstract string UserName { get; set; }

 internal abstract string Password { get; set; }

 internal abstract void Connect();

 internal abstract void LogIn();
}

As an aside, this is not a recommended design. The example above would work much better

as follows:

abstract class BackEnd
{
 void BackEnd()
 { }

 abstract void Connect(IConnectionSettings settings);

 abstract void LogIn(IUser user);
}

 Avoid doing more than setting properties in a constructor; provide a method on the class to

perform any extra work after the object has been constructed.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 35 of 58

 Avoid calling virtual methods from a constructor because the most-derived version will be

called, but before the constructor for that most-derived class has executed. The example

below illustrates this problem, where the override CaffeineAddict.GoToWork() uses

Coffee before it has been initialized.

public interface IBeverage
{
 public bool Empty { get; }
}

public abstract class Employee
{
 public Employee()
 {
 GoToWork();
 }

 protected abstract void GoToWork();

 protected void Drink(IBeverage beverage)
 {
 if (!beverage.Empty) // Crashes when initializing CaffeineAddict
 {
 // drink it
 }
 }
}

public class CaffeineAddict : Employee
{
 public CaffeineAddict(IBeverage coffee)
 : base()
 {
 _coffee = coffee;
 }

 public IBeverage Coffee
 {
 get { return _coffee; }
 }

 protected override void GoToWork()
 {
 Drink(Coffee);
 }

 private IBeverage _coffee;
}

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 36 of 58

 To avoid duplicating code, but also to avoid exposing an unwanted default constructor, use

a protected default constructor. For example:

protected Query()
{
 _restrictions = new List<IRestriction>();
 _sorts = new List<ISort>();
}

public Query(IMetaClass model)
 : this()
{
 Debug.Assert(model != null);
 Model = model;
}

public Query(IDataRelation relation)
 : this()
{
 Debug.Assert(relation != null);
 Relation = relation;
}

 Consider using a static factory method (e.g. on a *Tools class) if construction of an object is

very complex or would require a large number of constructor parameters.

6.6 Classes

 Never declare more than one field per line; each field should be an individually

documentable entity.

 Do not use public or protected fields; use private fields exposed through properties instead.

6.6.1 Abstract Classes

Please see section 2.1 – Abstractions for a discussion of when to use abstract classes.

 Do not define public or protected internal constructors for abstract types; instead,

define a protected or internal one.

 Consider providing a partial implementation of an abstract class that handles some of the

abstraction in a standard way; implementers can use this class as a base and avoid having to

repeat code in their own implementations. Such classes should use the “Base” suffix.

6.6.2 Static Classes

 Do not mark a class as static if it has instance members.

 Do not create too many static classes; instead, determine whether new functionality can be

added to an existing static class.

6.6.3 Sealed Classes & Methods

 Do not declare protected or virtual members on sealed classes

 Avoid sealing classes unless there is a very good reason for doing so (e.g. to improve

reflection performance).

 Consider sealing only selected members instead of sealing an entire class.

 Consider sealing members that you have overridden if you don’t want descendents to avoid

your implementation.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 37 of 58

6.7 Interfaces

Please see section 2.1 – Abstractions for a discussion of when to use interfaces.

 Use interfaces to “fake” multiple-inheritance.

 Define interfaces if there will be more than one implementation of a hierarchy; without

multiple-inheritance, this is the only way to remain flexible as to the implementation.

 Define interfaces to clearly define what comprises an API; an interface will generally be

smaller and more tightly-defined that the class that implements it. A class-based hierarchy

runs the risk of mixing interface methods with implementation methods.

 Consider using a C# attribute instead of a marker interface (an interface with no members).

This makes for a cleaner inheritance representation and indicates the use of the marker

better (e.g. NUnit tests as well as the serializing subsystem for .NET use attributes instead of

marker interfaces).

 Re-use interfaces as much as possible to avoid having many very similar interfaces that cause

confusion as to which one should be used where.

 Keep interfaces relatively small in order to ease implementation (5-10 members).

 Where possible, provide an abstract class or default descendent that application code can

use for implementing an interface. This provides both an implementation example and some

protection from future changes to the interface.

 Use interfaces where the functionality isn’t the direct purpose of the object or to expose a

part of the class’s functionality (as with aspect-oriented programming).

 Use explicit interface implementation where appropriate to avoid expanding a class API

unnecessarily.

 Each interface should be used at least once in non-testing code; otherwise, get rid of it.

 Always provide at least one, tested implementation of an interface.

6.8 Structs

Consider defining a structure instead of a class if most of the following conditions apply:

 Instances of the type are small (16 bytes or less) and commonly short-lived.

 The type is commonly embedded in other types.

 The type logically represents a single value and is similar to a primitive type, like an int or a

double.

 The type is immutable.

 The type will not be boxed frequently.
1

Use the following rules when defining a struct.

 Avoid methods; at most, have only one or two methods other than overrides and operator

overloads.

 Provide parameterized constructors for initialization.

 Overload operators and equality as expected; implement IEquatable instead of overriding

Equals in order to avoid the negative performance impact of boxing and un-boxing the

value.

1
 In scenarios that require a significant amount of boxing and unboxing, value types perform poorly as compared to

reference types.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 38 of 58

 A struct should be valid when uninitialized so that consumers can declare an instance

without calling a constructor.

 Public fields are allowed (even encouraged) for structures used to communicate with external

APIs through unmanaged code.

6.9 Enumerations

 Always use enumerations for strongly-typed sets of values

 Use enumerations instead of lists of static constants unless that list can be extended by

descendent code; if the list is not logically open-ended, use an enum.

 Enumerations are like interfaces; be extremely careful of changing them when they are

already included in code that is not under your control (e.g. used by a framework that is, in

turn, used by external application code). If the enumeration must be changed, use the

ObsoleteAttribute to mark members that are no longer in use.

 Do not assign a type to an enum unless absolutely necessary; use the default type of Int32

whenever possible.

 Do not include sentinel values, such as FirstValue or LastValue.

 Do not assign explicit values to simple enumerations except to enforce specific values for

storage in a database.

 The first value in an enumeration is the default; make sure that the most appropriate simple

enumeration value is listed first.

6.9.1 Bit-sets

 Use the [Flags] attribute to make a bit-set instead of a simple enumeration.

 Bit-sets always have plural names, whereas simple enumerations are singular.

 Assign explicit values for bit-sets in powers of two; use hexadecimal notation.

 The first value of a bit-set should always be None and equal to 0x00.

 In bit-sets, feel free to include commonly-used aliases or combinations of flags to improve

readability and maintainability. One such common value is All, which includes all available

flags and, if included, should be defined last. For example:

[Flags]
public enum QuerySection
{
 None = 0x00,
 Select = 0x01,
 From = 0x02,
 Where = 0x04,
 OrderBy = 0x08,
 NotOrderBy = All & ~OrderBy,
 All = Select | From | Where | OrderBy,
}

The values NotOrderBy and All are aliases defined in terms of the other values. Note that

the elements here are not aligned because it is expected that they will be documented, in

which case column-alignment won’t make a difference in legibility.

 Avoid designing a bit-set when certain combinations of flags are invalid; in those cases,

consider dividing the enumeration into two or more separate enumerations that are

internally valid.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 39 of 58

6.10 Nested Types

 Nested types should not replace namespaces for organization.

 Use nested types if the inner type is logically within the other type (e.g. a TableOfContents

class may have an Options inner class or a Builder inner class).

 Use nested types if the inner type should have access to all members of the outer type.

 Do not use public nested types unless you have a good reason for doing so (e.g. in the case

of the Options class described above).

 If a nested type needs a public constructor so that other types can create instances, then it

probably shouldn’t be nested.

 Delegate declarations should not be nested within the type because this reduces re-use of

delegate declarations between types.

 Use a nested type to group private or protected constants.

6.11 Local Variables

 Declare a local variable as close as possible to its first use (and within the most appropriate

scope).

 Local variables of the same type may be declared together, but only if they are not initialized.

IMetaEndpoint source, target;

 If a local variable is initialized, put the initialization on the same line as the declaration. If the

line gets too long, use multiple lines as described in section 4.5 – Line Breaking.

 Local variables that need to be initialized cannot be declared on the same line unless they

have the same initialization value.

int startOfWord = firstCharacter = 0;

6.12 Event Handlers

You should use the pattern and support classes for event-handling provided by the .NET library.

 Do not expose delegates as public members; instead declare events using the event

keyword.

 Do not add a method to a delegate with new EventHandler(…); instead, use delegate

inference.

 Do not define custom delegates for event handling; instead use EventHandler<T>.

 Put all extra event data into an EventArgs descendent; subsequent versions can alter this

descendent without changing the signature.

 Use CancelEventArgs as the base class if you need to be able to cancel an event.

 Neither the sender parameter nor the args parameter may be null; this avoids forcing

event handlers to check for null.

 EventsArgs descendents should declare only properties, not methods or other application

logic.

6.13 Operators

 Be extremely careful when overloading operators; in general, you should only do so for

structs. If you feel that an operator overload is especially clever, it probably isn’t; check

with another developer before coding it.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 40 of 58

 Avoid overriding the == operator for reference types; override the Equals() method instead

to avoid redefining reference equality.

 If you do override Equals(), you should also override GetHashCode().

 If you do override the == operator, consider overriding the other comparison operators (!=,

<, <=, >, >=) as well.

 You should return false from the Equals() function if the objects cannot be compared.

However, if they are different types, you may throw an exception.

6.14 Loops & Conditions

6.14.1 Loops

 Do not change the loop variable of a for-loop.

 Update while loop variables either at the beginning or the end of the loop.

 Keep loop bodies short and avoid excessive nesting.

 Consider using an inner class or other private methods if the body of a loop gets too

complex.

6.14.2 If Statements

 Do not compare to true or false; instead, compare pure Boolean expressions.

 Initialize Boolean values with simple expressions rather than using an if-statement; always

use parentheses to delineate the assigned expression.

bool needsUpdate = (Count > 0 && Objects[0].Modified);

 Always use brackets for flow-control blocks (switch, if, while, for, etc.)

 Do not add useless else blocks. An “if” statement may stand alone and an “else if”

statement may be the last condition.
1

if (a == b)
{
 // Do something
}
else if (a > b)
{
 // Do something else
}

// No final "else" required

6.14.3 Switch Statements

 Include a default statement that asserts or throws if all valid values are handled. This also

applies for enums because the compiler does not realize that no default statement is needed.

1
 This is noted only because some style guides explicitly require that the last statement in an “if/else if” block is an

empty “else” block if none is otherwise needed.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 41 of 58

 Use the following form when values initialized by the switch-statements are to be used

elsewhere in the method.

IDatabase result = null;
switch (type)
{
 case DatabaseType.PostgreSql:
 result = new PostgreSqlMetaDatabase();
 break;
 case DatabaseType.SqlServer:
 result = new SqlServerMetaDatabase();
 break;
 case DatabaseType.SQLite:
 result = new SqliteMetaDatabase();
 break;
 default:
 Debug.Assert(false, String.Format("Unknown database type: {0}", type));
}

// Work with "result".

return result;

 In the case where the switch statement is the either the entire method or the final block in a

method, use return statements directly from the case labels. In this case, the assertion is

replaced with an exception or it won’t compile.

switch (type)
{
 case DatabaseType.PostgreSql:
 return new PostgreSqlMetaDatabase();
 case DatabaseType.SqlServer:
 return new SqlServerMetaDatabase();
 case DatabaseType.SQLite:
 return new SqliteMetaDatabase();
 default:
 throw new ArgumentException("type", String.Format("Unknown type: {0}", type));
}

 The default label must always be the last label in the statement.

6.14.4 Ternary and Coalescing Operators

The ternary operator is a specialized form of an if/then statement with the following form:

return (_value != null) ? Value.ToString() : "NULL";

If the condition (_value != null in this case) is true, the operator returns the value after the

question mark; otherwise, it returns the value after the colon.

The coalescing operator is a specialized form of the ternary operator, which has the following

form:

return Target ?? Source;

The operator returns the expression before the two question marks if it is not null; otherwise, it

returns the expression after the two question marks.

 Use these operators for simple expressions and results.

 Do not use these operators with long conditions and values; instead, use an if/then

statement.

 Do not break statements with these operators in them over multiple lines.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 42 of 58

6.15 Comments

6.15.1 Formatting & Placement

 Comments are indented at the same level as the code they document.

 Place comments above the code being commented.

6.15.2 Styles

 Use the single-line comment style—//—to indicate a comment.

 Use four slashes —////—to indicate a single line of code that has been temporarily

commented.

 Use the multi-line comment style—/* … */—to indicate a commented-out block of code. In

general, code should never be checked in with such blocks.

 Use the single-line comment style with TODO to indicate an issue that must be addressed.

Before a check-in, these issues must either be addressed or documented in the issue tracker,

adding the URL of the issue to the TODO as follows:

// TODO http://issue-tracker.encodo.com/?id=5647: [Title of the issue in the issue
tracker]

6.15.3 Content

 Good variable and method names go a long way to making comments unnecessary.

 Comments should be in US-English; prefer a short style that gets right to the point.

 A comment need not be a full, grammatically-correct sentence. For example, the following

comment is too long

// Using a granularity that is more than 50% of the size causes a crash!

int Granularity = Size / 5;

Instead, you should stick to the essentials so that the warning is immediately clear:

int Granularity = Size / 5; // More than 50% causes a crash!

 Comments should be spellchecked.
1

 Comments should not explain the obvious. In the following example, the comment is

superfluous.

public const int Granularity = Size / 5; // granularity is 20% of size

 Use comments to explain algorithms or tricky bits that aren’t immediately obvious from a

quick read.

 Use comments to indicate where a hard-won bug-fix was added; if possible, include a

reference to a URL in an issue tracker.

 Use comments to indicate assumptions not already evident from assertions or thrown

exceptions.

 Longer comments should always precede the line being commented.
2

1
 CodeSpell is a good and relatively inexpensive spellchecker for Visual Studio 2005 and 2008.

2
 A newline separating the comment from its code is the recommended style, as it tends to separate the comments and

the code into separate, but interleaved blocks. This is, however, just a suggestion.

http://issue-tracker.encodo.com/?id=5647

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 43 of 58

 Short comments may appear to the right of the code being commented, but only for lines

ending in semicolon (i.e. marking the end of a statement). For example:

int Granularity = Size / 5; // More than 50% causes a crash!

 Comments on the same line as code should never be wrapped to multiple lines.

6.16 Grouping with #region Tags

 Use #region tags to distinguish groups of functions; use the auto-implement macro in

Visual Studio to ensure that interface implementations are surrounded in #region tags

describing which interface is being implemented by the enclosed functions.

 Use regions for generated code blocks.

 You may use regions to demarcate logical groups of members or types.

 A region should generally enclose more than one element.

6.17 Compiler Variables

 Avoid using #define in the code; use a compiler define in the project settings instead.

 Avoid suppressing compiler warnings.

6.17.1 The [Conditional] Attribute

Use the Conditional attribute instead of the #ifdef/#endif pair wherever possible (i.e. for

methods or classes).

public class SomeClass
{
 [Conditional("TRACE_ON")]
 public static void Msg(string msg)
 {
 Console.WriteLine(msg);
 }
}

6.17.2 #if/#else/#endif

For other conditional compilation, use a static method in a static class instead of scattering

conditional options throughout the code.

public static class EncodoCompilerOptions
{
 public static bool DeveloperBuild()
 {
#if ENCODO_DEVELOPER
 return true;
#else
 return false;
#endif
 }
}

This approach has the following advantages:

 The compiler checks all code paths instead of just the one satisfying the current options
1
; this

avoids unknowingly retaining incompatible code in a library or application.

1
 One drawback is that the editor doesn’t display the “unused” code as disabled, as it does when using compiler options

directly.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 44 of 58

 Code formatting and indenting is not broken up by (possibly overlapping) compile

conditions; the name EncodoCompilerOptions makes the connection to the compiler

obvious enough.

 The compiler option is referenced only once, avoiding situations in which some code uses

one compiler option (e.g. ENCODO_DEVELOPER) and other code uses another, misspelled

option (e.g. ENCODE_DEVELOPER).

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 45 of 58

7 Patterns & Best Practices

7.1 Safe Programming

 Use early-binding—which can be checked by the compiler—wherever possible; use late-

binding only when necessary.

 Avoid using new whenever possible; use override instead or restructure the code to avoid

it.

 Do not use goto unless you have gotten the approval of a senior member of your team.

 Use unsafe code only for integrating external libraries.

 If a reference may be null, test it before using it; otherwise, use Debug.Assert to verify

that it is not null.

 Do not re-use local variable names, even though the scoping rules are well-defined and

allow it. This prevents surprising effects when the variable in the inner scope is removed and

the code continues to compile because the variable in the outer scope is still valid.

 Do not modify a variable with a prefix or suffix operator more than once in an expression.

The following statement is not allowed:

items[propIndex++] = ++propIndex;

7.2 Side Effects

A side effect is defined as a change in an object as a result of reading a property or calling a

method that causes the result of the property or method to be different when called again.

 Reading a property may not cause a side effect.

 Writing a property may cause a side effect.

 Methods have side effects by definition.

 Avoid writing methods that return results and cause side effects. A method should either

retrieve information or it should execute an operation, but not both.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 46 of 58

7.3 Null Handling

 If a value of null is allowed for a parameter of an interface type, consider making an empty

implementation of that interface (named with the prefix “Null”).

interface IWeapon
{
 bool Ready { get; }
 void Aim();
 void Fire();
}

class NullWeapon : IWeapon
{
 bool Ready
 {
 get { return false; }
 }

 void Aim()
 {
 // NOP
 }

 void Fire()
 {
 // NOP
 }
}

Additionally, you should make an instance of this empty implementation available via a

global static. This makes it easier to write code that uses the interface, as it can assert that

the parameter is non-null and callers can simply pass in the empty implementation to satisfy

the pre-condition.

7.4 Casting

 Use the as-operator when testing and using a type.
1
 If you are just testing a type, use the

is-operator.

Class1 other = obj as Class1;
if (other == null) { return false; }

 If you are using the type of an object to route to a type-specific method, then you can use

the is-operator and the casting operator, as shown below.

if (this is IMetaProperty)
{
 HandleProperty((IMetaProperty)this);
}
else if (this is IMetaMethod)
{
 HandleMethod((IMetaProperty)this);
}
else
{
 HandleDefault(this);
}

1
 This does not work for value types; in that case, you should test with the is-operator and use a cast.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 47 of 58

 If you are sure of the type, use the casting operator to assert the type because it will throw

an InvalidCastException if it fails; this avoids having to test for null.

((IMetaClass)obj).RunShow();

7.5 Conversions

C# types can define explicit and implicit conversions to and from other types.

 Provide conversions only where they are logically justified; this goes double for implicit

conversions. For example, the Quino library object MetaString enhances a string with

multiple language representations; it can be freely converted to and from a string using the

default language. However, you should not be able to implicitly or explicitly cast a control

that displays a web page to a String (representing either the page content or the URL).

 Generally, you should only provide implicit conversions between types that are in the same

domain (like converting between string representations).

 Do not provide implicit conversions if the conversion would cause data-loss.

 Implicit conversions cannot throw exceptions; explicit conversions can. Use

InvalidCastException for such errors.

7.6 Object Lifetime

 Always use the using statement with objects implementing IDisposable to limit their

lifetimes.

 Set objects that are no longer needed to null so that the garbage collector can collect

them.

 Avoid using destructors because they incur a performance penalty in the garbage collector.

 Do not access other object references inside the destructor as those objects may already

have been garbage-collected (there is no guaranteed order-of-destruction as in other

languages).

 Use try/finally blocks (or related constructs, like using or lock) to clean up objects

allocated in a method. Local variables are automatically de-referenced when exiting the

method, so there’s no need to set them to null.

7.7 Using Dispose and Finalize

Dispose and Finalize provide control over how an object is garbage-collected. Finalize is

called when an object is reclaimed by the garbage collector; overriding it prevents resources from

leaking if a consumer of your class fails to call Dispose.

 If you implement Dispose, use the IDisposable interface to allow explicit recovery of

resources.

 Make sure that Dispose can be called multiple times safely; all other methods should raise

an ObjectDisposedException if Dispose has already been called.

 If there is a more appropriate domain-specific name for Dispose, implement the

IDisposable interface explicitly and provide a method with the new name that calls

Dispose.

 Call the GC.SuppressFinalize method to prevent Finalize from being executed if

Dispose() has already been called.

 If you implement Dipose, implement Finalize only if you actually have costly external

resources.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 48 of 58

 Finalize should simply include a call to Dispose.

 There are performance penalties for implementing Finalize, so proceed with caution.

 Finalize should never be public; call only the base.Finalize() method directly.

7.8 Using base and this

 Use this only when referring to other constructors.

 Do not use this to resolve name-clashes; instead, change one of the conflicting names.

 Use base only from a constructor or to call a predecessor method.

 You may only call the base method of the method being executed; do not call other base

methods. In the following example, the call to CheckProcess() is not allowed, whereas

the call to RunProcess() is.

public override void RunProcess()
{
 base.CheckProcess(); // Not allowed
 base.RunProcess();

 }

7.9 Using Value Types

Some value types have both Pascal- and camel-case versions. Though string is simply an alias of

String, you should not mix and match them everywhere. Instead, follow the rules below.

 Use types from the System namespace when calling static functions (e.g. String.Format or

String.IsNullOrEmpty).

 Use the value types when declaring variables or fields (e.g. string instead of String).

7.10 Using Strings

 Use the “+”-operator for concatenating up to three values; otherwise, use String.Format;

 Use a StringBuilder for more complex situations or when concatenation occurs over

multiple statements.

 In comparisons, use “” instead of String.Empty as it is clearer and shorter. The generated

code is the same.

 For function results, use String.Empty.

 When checking whether a string is empty, use String.IsNullOrEmpty instead of (s ==

null) or (s.Length == 0).

7.11 Using Checked

 Applications should always have range-checking during development and debugging.

 Range-checking may be disabled in release builds if there is a valid performance reason for

doing so.

 Overflow- and underflow-prone operations should have explicit checked blocks (i.e. if there

was a range-checking problem at some point, the block should be marked with a checked

block). This way, even if range-checking is disabled, these blocks will still be checked.

7.12 Using Floating Point and Integral Types

 Be extremely careful when comparing floating-point constants; unless you are using

decimals, the representation will have limited precision and lead to subtle bugs.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 49 of 58

 One exception to this rule is when you are comparing constants of fixed, known value (like

0.0 or 1.0, but not 3.14).

 Be extremely careful when casting representations with different sizes (e.g. Int64 to Int32);

always Assert that the value fits within the new representation so as to localize the point-

of-failure.

7.13 Using Generics

 Use the generic version of a class if available (e.g. use IList<T> instead of IList).

 Do not use casting in generic classes; use a generic constraint (where) instead.

 Use generic parameters and constraints instead of forcing a base type.

 Avoid constraints in delegates.

 Avoid constraints in generic methods; consider whether the problem can be solved another

way.

 If inheriting from both a generic and non-generic interface, implement the non-generic

version explicitly and implement it using the generic interface (e.g. when implementing

IEnumerable and IEnumberable<T>).

7.14 Using Event Handlers

 Be careful with events in performance-sensitive code; handlers can affect performance in

non-predictable ways.

 Assume that the state of the object triggering an event has changed in unpredictable ways

(i.e. that the code executed in the event handler may have changed the state of the calling

object).

 Assume that code in an event handler may trigger exceptions and act accordingly in the

Raise* triggering method.

 Be aware of which thread is triggering the event handler and which thread is handling the

event. Events handled in the main (UI) thread must be synchronized (this is a limitation of

Windows UI programming).

 To avoid multi-threading problems, get a reference to the handler in a local variable before

checking it and calling it. For example:

protected virtual void RaiseMessageDispatched()
{
 EventHandler handler = MessageDispatched;
 if (handler != null) { handler(this, new EventArgs()); }
}

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 50 of 58

The following code is an example of a simple event handler and receiver with all of the Encodo

style conventions applied.

public class Safe
{
 public event EventHandler Locked;

 public void Lock()
 {
 // Perform work

 RaiseLocked(new EventArgs());
 }

 protected virtual void RaiseLocked(EventArgs args)
 {
 EventHandler handler = Locked;
 if (handler != null) { Locked(this, args); }
 }
}

public static class StoreManager
{
 private static void SendMailAboutSafe(object sender, EventArgs args)
 {
 // Respond to the event
 }

 public static void TestSafe()
 {
 Safe safe = new Safe();
 safe.Locked += SendMailAboutSafe;
 safe.Lock();
 }
}

7.15 Using “var”

This section applies to .NET 3.5 only.

The introduction of the keyword var for implicitly-typed variables is a boon to writing legible

code. Using var can eliminate a lot of repeated text from code and make the intent much clearer.

However, the goal is to make code more legible, not just to use implicit typing as much as

possible.
1

 It is not sufficient that the code compile; a human reader must also be able to (relatively)

easily understand the code.

 You should always use semantically relevant names; this goes doubly so for local variables

using var.

 Do not use var when the return type is a basic type, like int or string.

 Use of var in larger scopes requires more care; within smaller scopes, its use is almost

always ok.

 Use var when the type or intent is already clear from the context; otherwise, specify the

type to improve understandability.

 Removing too many types not only reduces readability, but also reduces navigability (i.e. one

can no longer navigate to related types using F12).

1
 It is assumed that this keyword be used in an environment (e.g. Visual Studio 2008) that offers the code-completion and

quick navigation that makes implicitly-typed variables usable.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 51 of 58

7.15.1 Examples

 The classic case involves direct instantiation using the new-operator.

IList<Airplane> planes = new List<Airplane>();

This type of declaration needlessly clutters the code and should be replaced:

var planes = new List<Airplane>();

 The rule does not state that the full type must be stated—simply that the code be

understandable. The following example can use var because it also uses appropriate

variable- and method-naming conventions.

IDataList<Airplane> planes = connection.GetList<Airplane>();

Naming the variable planes in the plural and using the method name GetList is sufficient

to get the point across that the variable is a list of Airplane objects.

var planes = connection.GetList<Airplane>();

 In the following example, the right-hand side offers no hint as to the type (other than that

implied by the plural name GetAirplanes).

IDataList<Airplane> planes = hanger.GetAirplanes(connection);

However, you can use var here because the name of the variable planes is semantically

relevant.

var planes = hangar.GetAirplanes(connection);

7.16 Using out and ref parameters

One case in which you may return error codes instead of throwing exceptions is when writing a

library that will be used external code that does not support passing exceptions across process or

domain boundaries.

 If you must use error codes, do not return them; use out and ref parameters instead.

 Use out and ref parameters as little as possible.

 Instead of using many out and ref parameters, consider defining a struct instead; this

improves the maintainability of the API.

7.17 Error Handling

7.17.1 Strategies

 Exceptions are the primary means of signaling errors (see 7.17.3 – Exceptions).

 Consider carefully whether an error is truly exceptional or whether the component should

handle the error and set a property to indicate a status instead. This is especially true of code

that performs an asynchronous task (e.g. a communications component), where the

initiation point is separated from the completion point.

 Do not design methods that change error-handling strategy depending on a parameter; use

the Try*-pattern instead.

 If a method is expected to encounter one or more errors, don’t use exceptions; use an

IMessageRecorder instead.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 52 of 58

 Reserve the result for semantically relevant data. If there is no semantically relevant result,

use void. The following function is incorrect because -1 is not a semantically relevant result

for the method name.

public int GetNumberOfPeopleInFile(string fileName)
{
 if (CanLoadFile(fileName))
 {
 // Return actual number of people.
 }

 return -1;
}

Instead, you should use something like the following code, throwing exceptions for

situations that the API is not meant to handle.

public int GetNumberOfPeopleInFile(string fileName)
{
 File people = LoadFile(fileName); // throws exception

 // Return actual number of people.
}

7.17.2 Error Messages

 The standards for error messages are the same as for any other text that might be shown to

a user; use grammatically correct English (though translations may also be provided).

 Avoid question marks and exclamation points in messages (even assertion messages). Use

the error level or exception type to indicate severity or let the handler of the exception

determine what level of urgency to assign.

 Messages should always end in a period.

 Lower-level, developer messages should be logged to sources that are available only to those

with permission to view lower-level details.

 Applications should avoid showing sensitive information to end-users. This applies especially

to web applications, which must never show exception traces in production code. The exact

message returned by an exception can vary depending on the permission level of the

executing code.

 Be as specific as possible when throwing exceptions.

 The message should include as much information as possible, though it is highly

recommended to provide both a longer, low-level message (for logging and debugging) and

a shorter, high-level message for presenting to the user.

 Error messages should describe how the user or developer can avoid the exception.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 53 of 58

7.17.3 The Try* Pattern

The Try* pattern is used by the .NET framework. Generally, Try*-methods accept an out

parameter on which to attempt an operation, returning true if it succeeds.

 If you provide a method using the Try* pattern (), you should also provide a non-try-based,

exception-throwing variant as well.

public IExpression Parse(string text, IMessageRecorder recorder)
{
 // parse the string to an expression
}

public bool TryParse(string text, IMessageRecorder recorder, out IExpression
result)
{
 try
 {
 result = Parse(text, recorder);
 return true;
 }
 catch (ExpressionException)
 {
 result = null;
 return false;
 }
}

In the example above, you’ll note the parse process also accepts an IMessageRecorder,

which is used to record hints, warnings and errors. The function throws an

ExpressionException if any unrecoverable errors were detected. The contents of the

exception message should include the recorded messages as well.

7.18 Exceptions

7.18.1 Defining Exceptions

 Do not simply create an exception type for every different error.

 Create a new type only if you want to expose additional properties on the exception;

otherwise, use a standard type.

 Use a custom exception to hold any information that more completely describes the error

(e.g. error codes or structures).

throw new DatabaseException(errorInfo);

 Custom exceptions should always inherit from Exception (do not use

ApplicationException as its use has been deprecated).

 Custom exceptions should be public so that other assemblies can catch them and extract

information.

 Avoid constructing complex exception hierarchies; use your own exception base-classes if

you actually will have code that needs to catch all exceptions of a particular sub-class.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 54 of 58

 An exception should provide the three standard constructors (as well as the serialization

constructor if you are supporting serialization) and should use the given parameter names:

public class ConfigurationException : Exception
{
 public ConfigurationException()
 { }

 public ConfigurationException(string message)
 : base(message)
 { }

 public ConfigurationException(string message, Exception inner)
 : base(message, innerException)
 { }

 public ConfigurationException(SerializationInfo info, StreamingContext context)
 : base(message, innerException)
 { }
}

 Do not cause exceptions during the construction of another exception (this sometimes

happens when formatting custom messages) as this will subsume the original exception and

cause confusion.

 If an exception must be able to work across application domain and remoting boundaries,

then it must be serializable.

7.18.2 Throwing Exceptions

 If a member cannot satisfy its post-condition (or, absent a post-condition, fulfill the promise

implied in its name or specified in its documentation), it should throw an exception.

 Use standard exceptions where possible.

 Do not throw Exception or SystemException.
1

 Never throw Exception. Instead, use one of the standard .NET exceptions when possible.

These include InvalidOperationException, NotSupportedException,

ArgumentException, ArgumentNullException and ArgumentOutOfRangeException.

 When using an ArgumentException or descendent thereof, make sure that the ParamName

property is non-empty.

 Your code should not explicitly or implicitly throw NullReferenceException,

System.AccessViolationException, System.InvalidCastException, or

System.IndexOutOfRangeException as these indicate implementation details and

possible attack points in your code. These exceptions are to be avoided with pre-conditions

and/or argument-checking and should never be documented or accepted as part of the

contract of a method.

 Do not throw StackOverflowException or OutOfMemoryException; these exceptions

should only be thrown by the runtime.

 Do not explicitly throw exceptions from finally blocks (implicit exceptions are fine).

1
 Visual Studio generates code that throws an Exception when to indicate that it has not yet been implemented; these

are only temporary and do not need to be changed.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 55 of 58

7.18.3 Catching Exceptions

 Be as specific as possible as to which exceptions are caught (even if this means you have to

repeat some lines of handling code). This allows unexpected exceptions (e.g.

NullReferenceException) to show up during testing instead of being swallowed and

logged with other, expected errors.

 Catch and re-throw an exception in order to reset the internal state of an object to satisfy a

post-condition.

 In the case of a misbehaving third-party component, catch specific exceptions as much as

possible, but also catch all exceptions to prevent third-party problems from crashing the

application.

try
{
 // Use third-party code
}
catch (DatabaseException)
{
 // Handle problems with database
}
catch (ArgumentException)
{
 // Handle problems with arguments
}
catch (Exception)
{
 // Handle misbehaving third-party code
}

 Do not catch exceptions and reroute them to an event; this practice separates the point-of-

failure from the logging/collection point, increasing the likelihood that an exception is

ignored and making debugging very difficult.

7.18.4 Wrapping Exceptions

 Only catch an exception if you plan to wrap it in another exception, if you plan to handle it

by logging or setting an internal state, or

 Use an empty throw statement to re-throw the original exception in order to preserve the

stack-trace.

 Wrapped exceptions should always include the original exception in order to preserve the

stack-trace.

 Lower-level exceptions from an implementation-specific subsection should be caught and

wrapped before being allowed to bubble up to implementation-independent code (e.g.

when handling database exceptions).

7.18.5 Suppressing Exceptions

 Only suppress expected exceptions; do not write a catch-all exception handler unless you are

re-throwing the exception.

 You may only suppress an exception if you either set an internal state indicating the

exception on the catching object or if you log it (e.g. to an IMessageRecorder or a

TraceSource).

 If it is unsafe to continue executing after an error, consider calling

System.Environment.FailFast instead of throwing an exception.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 56 of 58

7.18.6 Specific Exception Types

 Catch and suppress System.Exception only from the most external layer of code in an

application or module. In other words, use catch-all exception handling when the exception

can be presented to the user or must be passed across an API-boundary (e.g. out of a DLL

loaded by legacy code).

 Do not catch ArgumentExceptions unless causing the error is unavoidable (i.e. you should

check preconditions before calling a method).

 Do not catch a StackOverflowException as the state of the running application that has

encountered a stack-overflow is not defined.

 Catching an OutOfMemoryException should be done rarely or not at all.

7.19 Generated code

 Avoid modifying generated code unless there is an extremely good reason for doing so.

 Use a custom build step to perform the modification to make sure that the required change

is not lost if the environment re-generates the file.

 Do not add application logic to AssemblyInfo.cs; add only attributes.

7.20 Setting Timeouts

 Use TimeSpans to encapsulate timeout values.

 Prefer passing the timeout value as a parameter to the method that will use it rather than

offering it as a property on the class. This more closely associates the timeout value with the

operation that uses it.

 The method can decide which values of TimeSpan are valid (including TimeSpan.Zero and

TimeSpan.MaxValue).

7.21 Configuration & File System

 An assembly or application should never make any assumptions about the location from

which it’s running; nor should it make assumptions about folder structure on a hard drive.

Use the members of System.Environment.SpecialFolder instead.

 Do not use the registry to store application information; save user settings to a user-

accessible file instead.

7.22 Logging and Tracing

 Use IMessageRecorder and IMessageStore wherever possible to collect multiple errors

from a process instead of throwing a single exception. Use these classes when output should

go to a user or might be collected by a UI; otherwise, use tracing.

 Use TraceSources to send output to logs; do not log directly to the console or screen

7.23 Performance

 If possible, set the list capacity in the constructor.

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 57 of 58

8 Processes

8.1 Documentation

8.1.1 Content

 Use XML documentation to document public and protected elements.

 Documentation should be written in English and must be grammatically correct (i.e. do not

just use lists of keywords or short phrases; prefer full sentences or clauses).

 Stay consistent when documenting similar members (e.g. properties); it’s ok to repeat

yourself or to use the same exact structure for all members (see below for examples).

 Use <see> tags to refer to properties, methods and classes.

 Use <paramref> and <typeparamref> tags to refer to method parameters.

 Subsequent references to a code element should be wrapped in <c> tags.

 Referenced elements should be capitalized as they are in code.

 Avoid applying possessives to code elements; instead of writing ‘<paramref

name="prop">’s value’, write ‘the value of <paramref name="prop">’.

 The keywords null, false and true are always wrapped in <c> tags.

 Include both <summary> and <value> tags (they generate to different places in the

documentation, despite their apparent redundancy). Yes, this means you will have repeated

text (see the examples below).

 The documentation for read-only properties should begin with “Gets” and the value

elements should begin with the word “The”.

/// <summary>
/// Gets the environment within which the database runs.
/// </summary>
/// <value>The environment within which the database runs.</value>
IDatabaseEnvironment Environment { get; }

 The documentation for read/write properties should begin with “Gets or sets”, as follows:

/// <summary>
/// Gets or sets the database type.
/// </summary>
/// <value>The type of the database.</value>
DatabaseType DatabaseType { get; }

 Boolean properties should have the following form, formatting the value element as follows:

/// <summary>
/// Gets a value indicating whether the database in <see cref="Settings"/> exists.
/// </summary>
/// <value><c>true</c> if the database exists; otherwise, <c>false</c>.</value>
bool Exists { get; }

 Values that cannot be null should be marked as such in the documentation. For example:

/// <summary>
/// Returns <c>true</c> if the value of <paramref name="prop"/> value has
/// changed since it was loaded from or stored to the database; otherwise
/// <c>false</c>.
/// </summary>
/// <param name="obj">The object to test; cannot be <c>null</c>.</param>
/// <param name="prop">The property to test; cannot be <c>null</c>.</param>
/// <returns>Returns <c>true</c> if the value has been modified; otherwise
/// <c>false</c>.</returns>
bool ValueModified(object obj, IMetaProperty prop);

Encodo C# Handbook – Conventions, Style & Best Practices I Encodo Systems AG

Page 58 of 58

 Use the <include> tag to include larger blocks of documentation (for example, large

<remarks> or <example> sections).

8.1.2 What to Document

 Method-level documentation is the absolute minimum (as it will be displayed by code-

completion).

 Public and protected code must be documented.

 Private and internal code should only be documented when needed; do not document small

methods or methods whose purpose is evident from their implementation.

 External tutorials and samples are strongly encouraged.

 Frameworks should provide a more in-depth documentation of the API that includes high-

level architecture, diagrams, examples and tutorials.

 Main documentation for an interface method goes with the interface; implementations

should include a copy of the base documentation
1
 enhanced by extra information for that

implementation.

8.2 Testing

 All code paths should be tested in a high-level manner; there is no utility in doing method

testing.
2

 Use the NUnit testing framework to create tests.
3

8.3 Releases

 Include range-checking if it doesn’t hamper performance.

 Include debug-information.

 Include code optimization.

1
 Use Ghostdoc to keep documentation between ancestors and descendents synchronized. The copied documentation is

necessary for the help compiler and code-completion tools.
2
 Classic unit-testing involves testing each and every accessor and method individually, which is largely a waste of time and

often fails to test the interaction between components, which is actually more important.
3
 Both ReSharper and TestMatrix offer excellent Visual Studio integration for nUnit testing. Visual Studio’s own msTest is

currently being considered as a replacement for nUnit.

	Table of Contents
	Version History
	Referenced Documents
	Open Issues
	Terms and Abbreviations
	General
	Goals
	Scope
	Fixing Problems in the Handbook
	Fixing Problems in Code
	Working with an IDE

	Design Guide
	Abstractions
	Inheritance vs. Helpers
	Interfaces vs. Abstract Classes
	Modifying interfaces
	Delegates vs. Interfaces
	Methods vs. Properties
	Virtual Methods
	Choosing Types
	Design-by-Contract
	Controlling API Size

	Structure
	File Contents
	Assemblies
	Namespaces
	Usage
	Naming
	Standard Prefixes
	Standard Suffixes
	Encodo Namespaces
	Grouping and ordering

	Formatting
	Indenting and Spacing
	Case Statements

	Brackets (Braces)
	Properties
	Methods
	Enumerations
	Return Statements

	Parentheses
	Empty Lines
	Line Breaking
	Method Calls
	Method Definitions
	Multi-Line Text
	Chained Method Calls
	Anonymous Delegates
	Lambda Expressions
	Ternary and Coalescing Operators

	Naming
	Basic Composition
	Valid Characters
	General Rules
	Collision and Matching

	Capitalization
	The Art of Choosing a Name
	General
	Namespaces
	Interfaces
	Classes
	Properties
	Methods
	Parameters
	Local Variables
	Events
	Enumerations
	Generic Parameters
	Lambda Expressions

	Common Names
	Local Variables and Parameters
	User Interface Components
	ASP Pages

	Language Elements
	Declaration Order
	Visibility
	Constants
	readonly vs. const
	Strings and Resources

	Properties
	Indexers

	Methods
	Virtual
	Overloads
	Parameters
	Constructors

	Classes
	Abstract Classes
	Static Classes
	Sealed Classes & Methods

	Interfaces
	Structs
	Enumerations
	Bit-sets

	Nested Types
	Local Variables
	Event Handlers
	Operators
	Loops & Conditions
	Loops
	If Statements
	Switch Statements
	Ternary and Coalescing Operators

	Comments
	Formatting & Placement
	Styles
	Content

	Grouping with #region Tags
	Compiler Variables
	The [Conditional] Attribute
	#if/#else/#endif

	Patterns & Best Practices
	Safe Programming
	Side Effects
	Null Handling
	Casting
	Conversions
	Object Lifetime
	Using Dispose and Finalize
	Using base and this
	Using Value Types
	Using Strings
	Using Checked
	Using Floating Point and Integral Types
	Using Generics
	Using Event Handlers
	Using “var”
	Examples

	Using out and ref parameters
	Error Handling
	Strategies
	Error Messages
	The Try* Pattern

	Exceptions
	Defining Exceptions
	Throwing Exceptions
	Catching Exceptions
	Wrapping Exceptions
	Suppressing Exceptions
	Specific Exception Types

	Generated code
	Setting Timeouts
	Configuration & File System
	Logging and Tracing
	Performance

	Processes
	Documentation
	Content
	What to Document

	Testing
	Releases

